locally rectifiable - Definition. Was ist locally rectifiable
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist locally rectifiable - definition

TOPOLOGICAL CONCEPT
Countably locally finite; Locally finite spaces; Locally finite refinement; Countably locally finite collection; Σ-locally finite

Locally convex topological vector space         
TYPE OF TOPOLOGICAL VECTOR SPACE
Locally convex; Locally convex space; Locally convex spaces; Locally convex topology; Locally convex basis; Locally convex vector space; LCTVS; Finest locally convex topology
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets.
Semi-locally simply connected         
  • The [[Hawaiian earring]] is not semi-locally simply connected.
Semilocally simply connected; Semi-locally simply connected space
In mathematics, specifically algebraic topology, semi-locally simply connected is a certain local connectedness condition that arises in the theory of covering spaces. Roughly speaking, a topological space X is semi-locally simply connected if there is a lower bound on the sizes of the “holes” in X.
Locally nilpotent         
Locally nilpotent group; Locally nilpotent ideal; Locally nilpotent algebra
In the mathematical field of commutative algebra, an ideal I in a commutative ring A is locally nilpotent at a prime ideal p if Ip, the localization of I at p, is a nilpotent ideal in Ap.

Wikipedia

Locally finite collection

A collection of subsets of a topological space X {\displaystyle X} is said to be locally finite if each point in the space has a neighbourhood that intersects only finitely many of the sets in the collection.

In the mathematical field of topology, local finiteness is a property of collections of subsets of a topological space. It is fundamental in the study of paracompactness and topological dimension.

Note that the term locally finite has different meanings in other mathematical fields.